

Development & Deployment of the Canadian Forward Aeromedical Evacuation Capability

NATO RAMS & STO Technical Course 2019

Major Erin Smith, MD, BEng, MSc, MPH, CCFP, CD1
Head of Military Medicine Section
Canadian Forces Environmental Medicine Establishment

Outline

- Background
- Development of new CAF FAE capability
- CMERT Design
- Operation PRESENCE Roto 0
- The future of FAE in the CAF
- Acknowledgements
 - LCol Hannah
 - NATO Colleagues!

Background

- Traditionally Canada has relied on partnership with Allies for FAE in deployed operational settings
- In 2006 the Canadian Forces Health Services was directed to develop a program and train Medical Technicians (Paramedics) for employment in the deployed FAE environment

This capability has only been used in a limited way in humanitarian operations

FAES Course on the CH-146 Griffon

Background

- Canada's capability has been limited due to the size of the CH-146 Griffon / Bell 412
- FAE was never incorporated into RCAF/CFHS doctrine
- Canada has recently (re)acquired the CH-147F
 Chinook which now gives us the capability of providing larger teams to care for/move larger numbers of patients

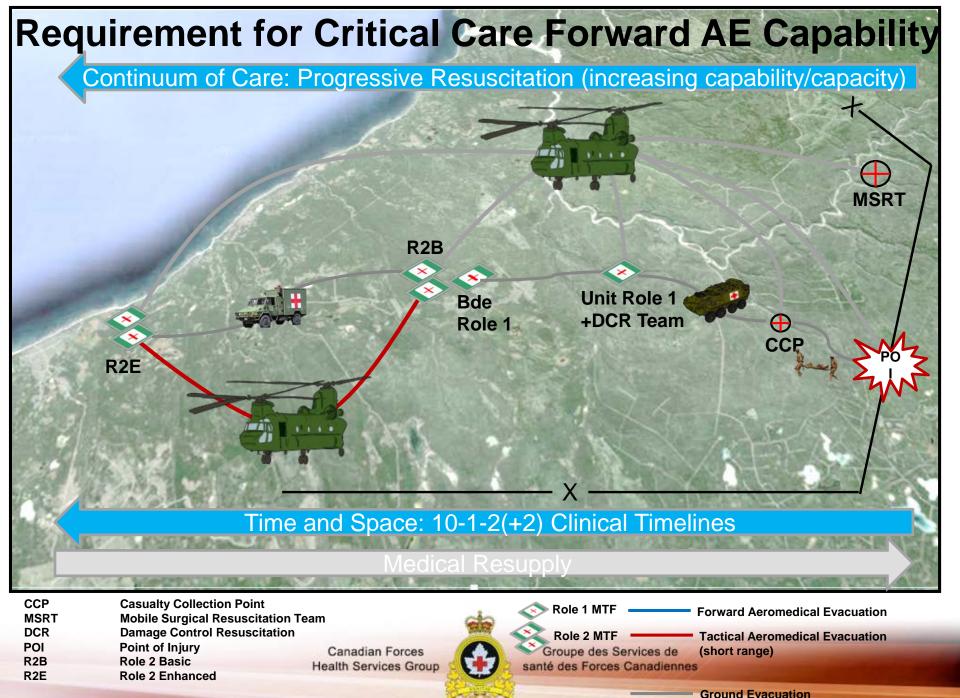
A golden opportunity

FAE Program Development

On 10 July 17 the Chief of Defence Staff, General Vance directed that "the RCAF, with the support of Health Services, would Force Develop and Force Generate a Forward AE structure that is capable, and scalable to meet National, Allied, Coalition, UN and NATO requirements. This capability must be operationally ready by 1 August 2018."

Canadian Forces Health Services Group

FAE Program Development



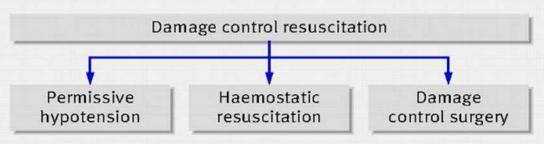
- CDS directive included:
 - Phase 1 develop initial capability, based on the CH147F platform
 - Phase 2 develop an enduring capability compatible with all Tactical RW platforms

- Capability must be interoperable with NATO

Allies

FAE Program Development

- Capability Requirements
 - Must fulfil NATO Mandated 10:1:2 timelines for evacuation of casualties
 - Force protection assets will also be required
 - Chinook will also be expected to do other tasks in addition to FAE, including utility taskings and support to other operations
 - FAE capability development includes development of doctrine TTPs for RCAF



FAE Capability

- FAE medical capability must meet the goal of increased survival rates
- Must be scalable to meet the needs of the mission, from one Med Tech acting alone to a full Critical Care Air Transport Team
- Must be able to support MSRT and principle of provide progressively increasing levels of care
- Consider accepted Critical Care Practices
 - DCR
 - DCS

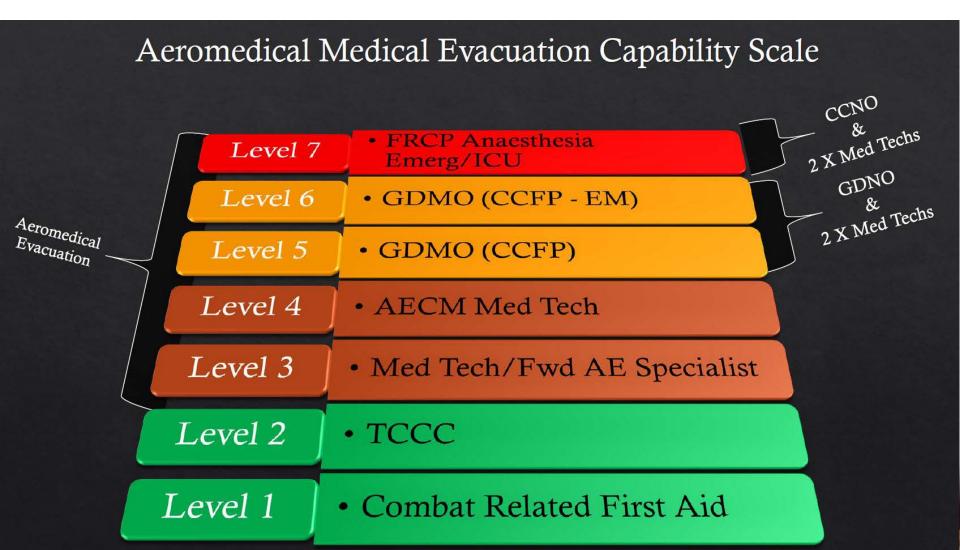
Medical Personnel and Skills

- Studies have suggested improved mortality outcomes in severely injured patients in combat settings when evacuated by medics with ALS skills vs. medics with only BLS training. (4, 5)
- A 2016 study showed no difference in mortality when AE was staffed with EMT-P or physician vs. EMT-B for the evacuation of casualties from the POI during Afghanistan Operations (6)
- A systematic review of controlled civilian studies published in 2009 suggested that the addition of a physician to the PH team did improve outcomes.(7)
- Two military specific, retrospective studies published since also suggest improved outcomes with physicians in a military setting. (8,9)
- Unfortunately, all studies are of lower quality, owing to their retrospective nature.

FAE Capability Assessment

- A Critical Care physician is required to move patients from MSRT
- A physician is a requirement of some of our NATO allies
- Capability will be scalable

Type of physicians and nurses will be based on mission


type and location

Canadi Health Se

FAE Capability

CMERT Crew Composition

- Assuming a semi-permissive environment:
 - 2 for 1 CH-147F
 - Crew includes 2 x Plt, 1 x FE, 1 x LM, 1 x DG
 - 4 for 2 CH-146
 - Crew includes 2 x Plt, 1 x FE, 1 x DG
 - Medical Crew includes
 - 1 x Physician, 1 x Nurse, 2 x Med Techs

CMERT Force Employment CONOP

- Single MOB, 1st + 2nd line support in situ, 2nd line maintenance in Canada
- Standard combat radius limited to 100nm (CH146 limit) –
 May be mitigated through tactics
- ½ cabin available for patient care/movement
- ½ cabin available for utility tasks
- Ground force support required; LZ (CCP) must be secure

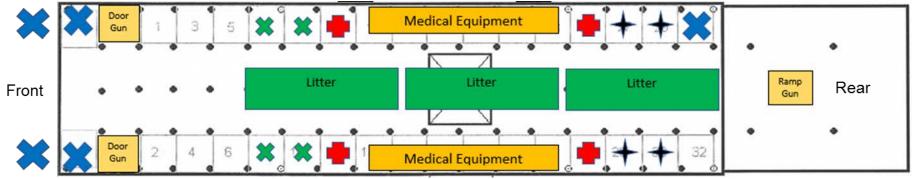
Medical Equipment Requirements

S THUMANOS PHIO

- Portable Patient Treatment Area (PPTA)
- Fluid containment floor system
- Wireless communications
- Advanced airway devices/support
- Ultrasound
- Blood fridge / cooler
- REBOA

Medical Equipment Challenges

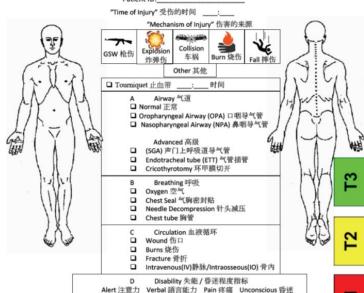
- All equipment requires airworthiness certification
- 'Wet floor' design/installation
- Storage / maintenance / upgrading of equipment is logistically challenging and expensive
- Objective is international interoperability
- Blood products complicated logistic tail
 - Fibrinogen concentrate
 - Freeze dried plasma
 - PRBC
- Oxygen dangerous cargo, subject to several restrictions for flight


Canadian Forces

Health Services Group

CMERT CONFIGURATION

- Team Composition
 - ★ 5 x CH147F Aircrew
 - 2 x Pilot; 1 x FE; 1 x LM; 1 x DG
 - 4 x Medical Crewmember
 - 1 x MO; 1 x CCNO; 2 x Med Tech
- → 4 x Force Protection (TCCC)


- Patient Capacity
- 3 x Litter
 - 4 x Ambulatory
 - 7 x Escorts / OtherPassengers

Tactics & Procedures

- C2
 - Connectivity To/From Avn Bn
 - Medical SME to facilitate: int assessment, mission acceptance, launch authority
- Documentation
 - 9-line, MIST & Handover
- SOP development
- Tactical environment ops
- Tac Avn
 - Flying tactics are best left to Tac Avn
 - Medical care is part of the mission set
 - AE crew must also participate in the operation of the aircraft

Eyes 眼神 /4 Verbal语言能力 /5 M
Spine motion restriction (SMR) 脊柱运动限制

Canadian Forces Health Services Group Groupe des Services de santé des Forces Canadiennes

Operation PRESENCE

- The Canadian Armed Forces (CAF) is currently supporting the United Nations Multidimensional Integrated Stabilization Mission in Mali (MINUSMA)
- The core mission is to provide MINUSMA with the 24/7 capability to medically evacuate UN forces by air
- Approximately 250 CAF personnel in Gao
- 3 x CH-147F + 5 x CH-146
- When possible, the CAF provides other services:
 - transport troops, equipment, and supplies
 - logistics support

Roto 0 - Mission Statistics

- 01 Aug 18 31 Jan 19
- 8 missions flown
- 25 patients moved
 - Pri A x 6
 - Pri B x 8
 - Pri C x 11
- 23 military; 2 civilian
- Destination MTFs
 - CHN R2
 - FRA R2
 - NGAR2
 - DEU R1
 - NLD R1
- https://www.facebook.com/watch/?v
 =789179431435176
 Canadian Forces Health Services Group

Roto 0 - Mission Statistics

Mechanism of Injury	Injuries Sustained	Interventions Provided
IED	Femur #	IV/IO
Small arms fire	Phalynx #	PRBC/FDP
Non-battle (hand)	Soft tissue lacerations	Crystalloid
Non-battle (eye)	Visceral lacerations	Pain control
Non-battle (back)	? Blast lung	Splinting
Environmental (heat)	Airway obstruction	
	Burns	
	Globe/orbit contusion	
	TBI	

• MOI and injuries sustained listed here do not correspond to any specific patient

10 expired after reaching DMTF

Groupe des Services de santé des Forces Canadiennes

Lessons Learned

- Physician qualification (GDMO, EM +1, Critical Care)
- Nurse qualification (GDNO, CCNO)
- IV pumps may not be necessary
- Blood products have been valuable
- Intubation vs supraglotic airway
- Integration training important minimum 7 days
- Communication challenges (3 different networks)
- ALSE requirements (helmets, vests)
- Physical Training / Strength
- Utilization of Force Pro for TCCC

Outstanding challenges

- Enduring concept design
- Force generation
- Selection process
- Maintenance of clinical skills

Maintenance of air-specific qualifications and

currencies

References

- 1. Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefield (2001-2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431-7.
- 2. Calderbank P, Woolley T, Mercer S, Schrager J, Kazel M, Bree S, et al. Doctor on board? What is the optimal skill-mix in military pre-hospital care? Emerg Med Journal. 2011;28(10):882-3.
- 3. Liberman M, Mulder D, Sampalis J. Advanced or basic life support for trauma: meta-analysis and critical review of the literature. J Trauma. 2000;49(4):584-99.
- 4. Brown JB, Rosengart MR, Forsythe RM, Reynolds BR, Gestring ML, Hallinan WM, et al. Not all prehospital time is equal: Influence of scene time on mortality. J Trauma Acute Care Surg. 2016;81(1):93-100.
- 5. Mabry RL, Apodaca A, Penrod J, Orman JA, Gerhardt RT, Dorlac WC. Impact of critical care-trained flight paramedics on casualty survival during helicopter evacuation in the current war in Afghanistan. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S32-7.
- 6. Maddry J, Mora AG, Savell S, Reeves LK, Perez CA, Bebarta VS. Combat MEDEVAC: A comparison of care by provider type for en route trauma care in theater and 30-day patient outcomes. J Trauma Acute Care Surg. 2016.
- 7. Botker MT, Bakke SA, Christensen EF. A systematic review of controlled studies: do physicians increase survival with prehospital treatment? Scand J Trauma Resus Emerg Med. 2009;17:12 1. Spinella PC, Holcomb JB. Resuscitation and transfusion principles for traumatic hemorrhagic shock. Blood Rev. 2009;23(6):231–40. http://dx.doi.org/10.1016/j.
- blre.2009.07.003. Medline:19695750
- 8. Morrison JJ, Oh J, DuBose JJ, O'Reilly DJ, Russell RJ, Blackbourne LH, et al. En-route care capability from point of injury impacts mortality after severe wartime injury. Ann Surg. 2013;257(2):330-4.
- Apodaca A, Olson CM, Jr., Bailey J, Butler F, Eastridge BJ, Kuncir E. Performance improvement evaluation of forward aeromedical evacuation platforms in Operation Enduring Freedom. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S157-63.

Questions?

